


## Educando para a paz

| inflammation mice modelAutoresJackeline A. Mendes, Matheus C. Ribeiro, Gustavo J. M. V. Reis Filho, Thalita Rocha,<br>Marcelo N. Muscará, Soraia K. P. Costa, Heloisa H. A. FerreiraAutor (es) USFThalita RochaAutores InternacionaisPrograma/Curso (s)Programa/Curso (s)Programa de Pós-Graduação Stricto Sensu em Ciências da SaúdeDOI10.1016/j.intimp.2019.05.041Assunto (palavras<br>chaves)Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; CytokinesIdiomaInglêsFonteTítulo do periódico: International Immunopharmacology<br>ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019Data da publicaçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergents. This study aimed to investigate whether H2S protext against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of publoming/ W0A were<br>treated with H2S donor (sodium hydrosulfide [NaH5]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was kixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NAHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>chal                                                                                                                                                                                 | Тіро                         | Periódico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marcelo N. Muscará, Soraia K. P. Costa, Heloisa H. A. FerreiraAutor (es) USFThalita RochaAutores InternacionaisPrograma/Curso (s)Programa/Curso (s)Programa de Pós-Graduação stricto Sensu em Ciências da SaúdeDOI10.1016/j.intimp.2019.05.041Assunto (palavras<br>chaves)Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; CytokinesIdiomaInglêsFonteTítulo do periódico: International Immunopharmacology<br>ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019Data da publicaçãoAugust 2019Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaH5]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formatin for morphological results showed that NaH5 reduced the airway infilmamatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspas -3 and FasL in response to the allergen movA<br>significant                                                                                                                                                                                 | Título                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Autores Internacionais Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde   DOI 10.1016/j.intimp.2019.05.041   Assunto (palavras chaves) Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; Cytokines   Idioma Inglés   Fonte Título do periódico: International Immunopharmacology ISSN: 1567-5769   Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019   Data da publicação August 2019   Formato da produção Digital https://doi.org/10.1016/j.intimp.2019.05.041   Resumo Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of fA2 cytokines and on the infiltration of pulmonary inflammatory cells were also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with H2S donor (sodium hydrosulfide (NaHSI)) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formalin for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histolgical results showed that NaHS reduced the airway inflammatory infilmate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA ch                                                                                                                                                                                                                                                                                                        | Autores                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde   DOI 10.1016/j.intimp.2019.05.041   Assunto (palavras<br>chaves) Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; Cytokines   Idioma Inglês   Fonte Título do periódico: International Immunopharmacology<br>ISSN: 1567-5769   Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019   Data da publicação August 2019   Formato da produção Digital<br>https://doi.org/10.1016/j.intimp.2019.05.041   Resumo Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and                                                                                                                                                                                                                                          | Autor (es) USF               | Thalita Rocha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DOI 10.1016/j.intimp.2019.05.041   Assunto (palavras chaves) Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; Cytokines   Idioma Inglês   Fonte Título do periódico: International Immunopharmacology   ISSN: 1567-5769 Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019   Data da publicação August 2019   Formato da produção Digital<br>https://doi.org/10.1016/j.intimp.2019.05.041   Resumo Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis in protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formain for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histological results showed that NAHS reduced the airway inflammatory infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA challenge. Activation of caspase 3 and FasL in response to the allergen was also fully prevented by NAHS treatment. TUNEL staining showed that the challenge from OVA significantly increased the rate of apoptosis in the bronchiol                                                                                                                                                                                                                                                          | Autores Internacionais       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Assunto (palavras<br>chaves) Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; Cytokines   Idioma Inglês   Fonte Título do periódico: International Immunopharmacology<br>ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019   Data da publicação August 2019   Formato da produção Digital<br>https://doi.org/10.1016/j.intimp.2019.05.041   Resumo Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation inmice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was ab                                                                                               | Programa/Curso (s)           | Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| chaves)IdiomaInglêsFonteTítulo do periódico: International Immunopharmacology<br>ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019Data da publicaçãoAugust 2019Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide (NaHS)) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NAIS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in reating allergic lung disorders,<br>showed that H2S donor has a protective effect against airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lung disorders,                                                       | DOI                          | 10.1016/j.intimp.2019.05.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FonteTitulo do periódico: International Immunopharmacology<br>ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019Data da publicaçãoAugust 2019Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-5 and IL-5 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was abolished by NaHS treatment. In conclusion, our results<br>showed that H2S donor has a protective effect aginst airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lu | Assunto (palavras<br>chaves) | Ovalbumin; Sodium hydrosulfide; Lung; Apoptosis; TUNEL; Cytokines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ISSN: 1567-5769<br>Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019Data da publicaçãoAugust 2019Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Idioma                       | Inglês                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Data da publicaçãoAugust 2019Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was abolished by NaHS treatment. In conclusion, our results<br>showed that H2S donor has a protective effect against airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lung disorders,                                                                                                                 | Fonte                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Formato da produçãoDigital<br>https://doi.org/10.1016/j.intimp.2019.05.041ResumoStudies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NAHS reduced the airway infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was abolished by NaHS treatment. In conclusion, our results<br>showed that H2S donor has a protective effect against airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lung disorders,                                                                                                                                                              |                              | Volume/Número/Paginação/Ano: v. 73, p. 435-441, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| https://doi.org/10.1016/j.intimp.2019.05.041<br>Resumo<br>Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the<br>pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was abolished by NaHS treatment. In conclusion, our results<br>showed that H2S donor has a protective effect against airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lung disorders,                                                                                                                                                                    | Data da publicação           | August 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be<br>triggered by changes in airway epithelium caused by repeated exposure to environmental<br>allergens. This study aimed to investigate whether H2S protects against bronchial<br>epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the<br>production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were<br>also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were<br>treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After<br>euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis<br>protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in<br>formalin for morphological analysis of lung tissue and verification of apoptosis in situ by<br>the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory<br>infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA<br>challenge. Activation of caspase 3 and FasL in response to the allergen was also fully<br>prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA<br>significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this<br>incremental apoptosis was abolished by NaHS treatment. In conclusion, our results<br>showed that H2S donor has a protective effect against airway epithelium damage caused<br>by an allergic reaction, and represents a potential agent in treating allergic lung disorders,                                                                                                                                                                                                                                                                                                                         | Formato da produção          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Resumo                       | pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formalin for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA challenge. Activation of caspase 3 and FasL in response to the allergen was also fully prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this incremental apoptosis was abolished by NaHS treatment. In conclusion, our results showed that H2S donor has a protective effect against airway epithelium damage caused by an allergic reaction, and represents a potential agent in treating allergic lung disorders, |
| Fomento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fomento                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

