

Тіро	Periódico
Título	Effects of Kynurenic Acid on the Rat Aorta Ischemia-Reperfusion Model:
	Pharmacological Characterization and Proteomic Profiling
Autores	LIMA, VIVIANE SOARES SOUZA ; MARIANO, DOUGLAS OSCAR CEOLIN ; VIGERELLI,
	HUGO ; JANUSSI, SABRINA CARDOSO ; BAPTISTA, THAYZ VANALLI LIMA ; CLAUDINO,
	MÁRIO ANGELO ; PIMENTA, DANIEL CARVALHO ; SCIANI, JULIANA MOZER
Autor (es) USF	LIMA, VIVIANE SOARES SOUZA ; JANUSSI, SABRINA CARDOSO ; BAPTISTA, THAYZ
	VANALLI LIMA ; CLAUDINO, MÁRIO ANGELO e ; SCIANI, JULIANA MOZER
Autores Internacionais	-
Programa/Curso (s)	Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde
DOI	10.3390/molecules26102845
Assunto (palavras chaves)	aorta; functionality; ischemia-reperfusion; kynurenic acid; proteomics
Idioma	inglês
Fonte	Título do periódico: Molecules
	ISSN: 1420-3049
	Volume/Número/Paginação/Ano: 26(10), 2845, 2021
Data da publicação	11 May 2021
Formato da produção	Impressa ou digital
Resumo	Kynurenic acid (KYNA) is derived from tryptophan, formed by the kynurenic pathway.
	KYNA is being widely studied as a biomarker for neurological and cardiovascular
	diseases, as it is found in ischemic conditions as a protective agent; however, little is
	known about its effect after ischemia-reperfusion in the vascular system. We induced
	ischemia for 30 min followed by 5 min reperfusion (I/R) in the rat aorta for KYNA
	evaluation using functional assays combined with proteomics. KYNA recovered the
	exacerbated contraction induced by phenylephrine and relaxation induced by
	acetylcholine or sodium nitroprussiate in the I/R aorta, with vessel responses returning
	to values observed without I/R. The functional recovery can be related to the
	antioxidant activity of KYNA, which may be acting on the endothelium-injury
	prevention, especially during reperfusion, and to proteins that regulate
	neurotransmission and cell repair/growth, expressed after the KYNA treatment. These
	proteins interacted in a network, confirming a protein profile expression for
	endothelium and neuron repair after I/R. Thus, the KYNA treatment had the ability to
	recover the functionality of injured ischemic-reperfusion aorta, by tissue repairing and
	control of neurotransmitter release, which reinforces its role in the post-ischemic condition, and can be useful in the treatment of such disease.
Eomento	
Fomento	

