Tipor + + + + Periódico Educando Título Screening of new BACE-1 inhibitors from marine animals: Molecular interaction and pharmacokinetic studies to find new drug prototypes Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores Internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/Air.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAVSH); STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical traits due to high toxicity and/or efficay (HUNG; FU, 2017). So far, the main clinical traits due to high toxicity and/or efficay Generate (Muragueti Chareau C		
Tipo ++++ Periodico Parta apazz Titulo Screening of new BACE-1 inhibitors from marine animals: Molecular interaction and pharmacokinetic studies to find new drug prototypes Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Titulo do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação Ja/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases accumulation generated after an endoproteolytic cleavage of APP by secretases accumulation generated after an endoproteolytic cleavage of APP by secretases accumulating a new prototype for amyloid plaques accumulating a new prototype for amyloid plaques deces from marine habitat have provided compounds of therapeutic interest, one of them applied to AD (MALVE, 2016). Thus, the objective of theis work was to f		
Titulo Screening of new BACE-1 inhibitors from marine animals: Molecular interaction and pharmacokinetic studies to find new drug prototypes Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores (Internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Titulo do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases Aydix KABAYASH, STRODER, 2008). Secretase: inhibitors have been studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few yeers (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, one of them applied to AD (MAUY, 2016). Thus, the objective of this work was to find new drugsgable β-screates (BACE1) inhibitors amorg molecules described from marine animals, aiming a new prototype for amyloid plaques decr	+ + + + + + + + + + + + + + + + + + +	
Titulo Screening of new BACE-1 inhibitors from marine animals: Molecular interaction and pharmacokinetic studies to find new drug prototypes Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores (Internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Titulo do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases Aydix KABAYASH, STRODER, 2008). Secretase: inhibitors have been studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few yeers (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, one of them applied to AD (MAUY, 2016). Thus, the objective of this work was to find new drugsgable β-screates (BACE1) inhibitors amorg molecules described from marine animals, aiming a new prototype for amyloid plaques decr		hara a naz
pharmacokinetic studies to find new drug prototypes Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores Internacionals - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, Inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAVASH; STROOPER, 2008). Secretase inhibitors have been studied, but falied in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from nariural products have been used as prototypes in the development of new drugs, and species from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were sharied if the waree postitoned in the enzyme active site, with distance low		
Autores Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autor (es) USF Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores Internacionals - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/al.052135 Assunto (palavras chaves) Alzheimer, BACE-1, Inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoporteolytic cleavage of APP by secretases (WAKABAYASH); STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficay (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decre	Título	-
Autor (es) USF Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores Internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Altheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Numero/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretase (WAKABAYASHI; STROOPRE, 2008). Sceretase inhibitors have been studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors thato only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to preduct moleculars were selected if they w		pharmacokinetic studies to find new drug prototypes
Autor (es) USF Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani Autores Internacionais - Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Altheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Numero/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretase (WAKABAYASHI; STROOPRE, 2008). Sceretase inhibitors have been studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors thato only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to preduct moleculars were selected if they w	A. 1	
Autores Internacionais - Program/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impresa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAVASH); STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecul		
Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1002/al.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglês Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical traits due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical tratement for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine ahintat have provotype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predit molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kad/mol. Selected molecules were analyzed for their pharmacckinetics properties (PK) and druggability using the SwissADM	:	Thabatta Giuliani Monclus Romanek, Paola De Blasio, Juliana Mozer Sciani
DOI 10.1002/alz.052135 Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASH; STROOPER, 2008). Secretase inhibitors hubeen studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable B-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 KacI/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: Fr		
Assunto (palavras chaves) Alzheimer, BACE-1, inhibition, marine animal Idioma Inglés Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAVASH; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials mer been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if them the profierous Aplysia and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007).		
Idioma Inglês Fonte Título do periódico: Alzheimer's & Dementia ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021 Data da publicação 31/12/21 Formato da produção Impressa ou digital Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAVSHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSP Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kca/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwisADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activit		ļ
FonteTítulo do periódico: Alzheimer's & Dementia ISN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021Data da publicação31/12/21Formato da produçãoImpressa ou digitalResumoBackground; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical trials due to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server.Result: From 48 molecules, 3 were selected by molecular docking, enargy (-9,71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H		
ISSN: 1552-5279 Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021Data da publicação31/12/21Formato da produçãoImpressa ou digitalResumoBackground; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server.Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PSA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the		
Volume/Número/Paginação/Ano: v. 17, p. e052135, 2021Data da publicação31/12/21Formato da produçãoImpressa ou digitalResumoBackground; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server.Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PSA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2	Fonte	
Data da publicação31/12/21Formato da produçãoImpressa ou digitalResumoBackground; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 		
Formato da produçãoImpressa ou digitalResumoBackground; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine anima, animig a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had l		
Resumo Background; One cause of the Alzheimer's disease (AD) is the amyloid plaques accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASH; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSP Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP -2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prot		ļ
accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PSA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy $(-9.71 kcal/mol)$ and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP -2.5 , high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characterist	Formato da produção	Impressa ou digital
accumulation, generated after an endoproteolytic cleavage of APP by secretases (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PSA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy $(-9.71 kcal/mol)$ and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP -2.5 , high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characterist	Documo	Rackground: One cause of the Alzheimer's disease (AD) is the amulaid plagues
 (WAKABAYASHI; STROOPER, 2008). Secretase inhibitors have been studied, but failed in clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the porferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 mol	Resultio	
clinical trials due to high toxicity and/or efficacy (HUNG; FU, 2017). So far, the main clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP -2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for th		
clinical treatment for AD is the administration of cholinesterase inhibitors that only increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP -2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
increases the patient's survival in a few years (GAN et al., 2004). Molecules from natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
natural products have been used as prototypes in the development of new drugs, and species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β-secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
species from marine habitat have provided compounds of therapeutic interest, none of them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
druggable β -secretase (BACE1) inhibitors among molecules described from marine animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
animals, aiming a new prototype for amyloid plaques decrease. Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		them applied to AD (MALVE, 2016). Thus, the objective of this work was to find new
Method: Molecules from marine animals were searched in scientific articles and prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		druggable β -secretase (BACE1) inhibitors among molecules described from marine
prepared for docking, conducted by Swiss Dock server, to predict molecular interaction with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		animals, aiming a new prototype for amyloid plaques decrease.
with BACE1 (PDB code 2VKM). Results were analyzed by UCSF Chimera, and molecules were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
were selected if they were positioned in the enzyme active site, with distance lower than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
than 3 Å and binding energy lower than -6 kcal/mol. Selected molecules were analyzed for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6.98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
for their pharmacokinetics properties (PK) and druggability using the SwissADME server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		i
server. Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
Result: From 48 molecules, 3 were selected by molecular docking. Psammaplin A (PsA) is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
is one of them, extracted from the poriferous Aplysin and known for its antibacterial and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
and antitumor activities (SELEGHIM et al, 2007). It had favorable binding energy (-9.71 kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
kcal/mol) and short distance between the ligand and the protein (1,923 and 2,615 Å2); however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
however, its PK was not suitable for a drug. On the other hand, 1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
1H-Benzo[de][1,6]naphthyridine and Sebastianine A had lower binding energy as well (−6.76 and −6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
 (-6.76 and -6,98 kcal/mol, respectively) and favorable PK: logP ~2.5, high gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD. 		-
gastrointestinal absorption, brain-blood barrier permeant, low ability to inhibit liver enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
enzymes and no violation of the Lipinski's rules, characteristics to be druggable. Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
Conclusion: Using molecular docking, 3 molecules were selected as potential inhibitors of BACE1, being two of them druggable and good prototypes for the treatment of AD.		
of BACE1, being two of them druggable and good prototypes for the treatment of AD.		i
	Fomento	

