

Educando para a paz

Título Artificial sweetener saccharin disrupts intestinal epithelial cells' barrier function <i>in vitro</i> Autores P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero Autor (es) USF P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero Autores Internacionais Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1039/C8F000883C Assunto (palavras chaves) Indisponível chaves) Indisponível Volume/Número/Paginação/Ano: v. 1, p. 1, 2018 O1 Jun 2018 Data da publicação O1 Jun 2018 Formato da produção Digital https://doi.org/10.1039/C8F000883C Resumo Scope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DW2. Atthough these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability in decensed transepithelial electrical resistance (TEER) via an on-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-x8 (NF-x8) was able to prevent the reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity an diters paracellular permeability in a clausing ne	Тіро	Periódico
Autores P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero Autor (es) USF P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero Autores Internacionais Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1039/C8F000883C Assunto (palavras Indisponível chaves) Português Fonte Título do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018 Data da publicação 01 Jun 2018 Formato da produção Digital https://doi.org/10.1039/C8F000883C Nessing Prosesting Permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar conclarations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction in TEER induced by saccharin treatment. Thaildomide, as an inhibitor of ubiquitin ligase, was able to prevent the reduction in Caco-2 cells. Conclusions: Saccharin of the tight junction protein claudin-1 were reduced in Caco-2 cells meanism involving NF-KB activation, resulting in the ubiquitintation of thte tight junction in Caco-2 cells. Conclusion: Saccharin		
Autor (es)USFP. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. GamberoAutores InternacionaisPrograma de Pós-Graduação Stricto Sensu em Ciências da SaúdeDOI10.1039/C8FO00883CDOI10.1039/C8FO00883CAssunto (palavras chaves)IndisponívelSourcePortuguêsFonteTítulo do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicaçãoO1 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DMZ. Although these substances are safe, possible biological interactions with the digestive current work sought to investigate the action of different NNS on intestinal permeability, using an invitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction in TCER. Induced by saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-KB activation of the tight junction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-KB activation resulting in the ubiquitinia of the tight junction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters p		
Autores Internacionais Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1039/C8F000883C Assunto (palavras chaves) Indisponível Indisponível Português Fonte Título do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018 OI Jun 2018 Data da publicação Digital https://doi.org/10.1039/C8F000883C Scope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of disrupt monolayer integrity in the cells. However, saccharin, ne sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Cao-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-48 (NF-48) was able to prevent the reduction in Cao-2 cell sub saccharin increased paracellular permeability and alters paracellular permeability in a cao-2 cells that had previously been exposed to saccharin. resulting in the ubiquitination of the tight junction protein caudin-1. Were reduction on the carbin expression and the TEER reduction in Cao-2 cell monolayer model, via a mechanism involving NF-48 was able to prevent the decrease in claudin-1 protein expressio	Autores	P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero
Programa/Curso (s) Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde DOI 10.1039/C8F000883C Assunto (palavras Indisponível chaves) Indisponível Idioma Português Fonte Título do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018 Data da publicação 01 Jun 2018 Formato da produção Digital https://doi.org/10.1039/C8F000883C Resumo Scope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear facto-x48 (NF-kB) was able to prevent the reduction in TEER induced by saccharin trafator-x48 (NF-kB) was able to prevent the reduction in Taco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeabilit	Autor (es) USF	P. S. Santos, C. R. P. Caria, E. M. F. Gotardo, M. L. Ribeiro, J. Pedrazzoli, A. Gambero
DOI 10.1039/C8F000883C Assunto (palavras chaves) Indisponível Idioma Português Fonte Título do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018 Data da publicação 01 Jun 2018 Formato da produção Digital https://doi.org/10.1039/C8F000883C Resumo Scope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell. Methods and fresults: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin, nor sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells Methods, was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer integrity in a daters paracellular permeability in a caco-2 cell	Autores Internacionais	
Assunto (palavras chaves)IndisponívelIdiomaPortuguêsFonteTítulo do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells NF-xB) was able to prevent the reduction in TEER induced by saccharin increase in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer indegrity in a machanism involving NF-xB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	Programa/Curso (s)	Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde
IdiomaPortuguêsFonteTítulo do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin. The inhibition of nuclear factor-kB (NF-kB) was able to prevent the reduction in TEER induced by saccharin tratment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Gaco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell moolayer model, via a mechanism involving NF-kB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin the subiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	DOI	10.1039/C8FO00883C
FonteTítulo do periódico: Food & Function ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tigh tjunction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-xB (NF-xB) was able to prevent the reduction in TEER induced by saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-xB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	Assunto (palavras chaves)	Indisponível
ISSN: 2042-6496 Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. 	Idioma	Português
Volume/Número/Paginação/Ano: v. 1, p. 1, 2018Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-xB (NF-xB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-xB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	Fonte	
Data da publicação01 Jun 2018Formato da produçãoDigital https://doi.org/10.1039/C8F000883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-R8 (NF-к8) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of builquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-k8 activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.		
Formato da produção Digital https://doi.org/10.1039/C8FO00883C Scope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-кB (NF-κB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-κB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.		Volume/Número/Paginação/Ano: v. 1, p. 1, 2018
https://doi.org/10.1039/C8FO00883CResumoScope: Consumption of non-nutritive sweeteners (NNS) is a dietary practice used by those who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-kB (NF-kB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-kB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	Data da publicação	01 Jun 2018
who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-kB (NF-kB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-kB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin consumption may potentially alter the intestinal integrity in humans.	Formato da produção	
Fomento	Resumo	who wish to lose weight or by patients on a sugar-restricted diet such as those with DM2. Although these substances are safe, possible biological interactions with the digestive tract, particularly in relation to intestinal permeability, have not been studied. Thus, the current work sought to investigate the action of different NNS on intestinal permeability using an in vitro Caco-2 cell model. Methods and results: Caco-2 cells were incubated with acesulfame K, aspartame, saccharin, or sucralose at equimolar concentrations. Acesulfame K, aspartame, and sucralose did not disrupt monolayer integrity in the cells. However, saccharin increased paracellular permeability and decreased transepithelial electrical resistance (TEER) via a non-cytotoxic mechanism. The levels of the tight junction protein claudin-1 were reduced in Caco-2 cells that had previously been exposed to saccharin. The inhibition of nuclear factor-κB (NF-κB) was able to prevent the reduction in TEER induced by saccharin treatment. Thalidomide, as an inhibitor of ubiquitin ligase, was able to prevent the decrease in claudin-1 protein expression and the TEER reduction in Caco-2 cells. Conclusions: Saccharin disrupts monolayer integrity and alters paracellular permeability in a Caco-2 cell monolayer model, via a mechanism involving NF-κB activation, resulting in the ubiquitination of the tight junction protein claudin-1. Saccharin
	Fomento	· · · · · · · · · · · · · · · · · · ·

+ + + +

+ + + +