

RESOLUÇÃO CONSEPE 6/2018

ALTERA MATRIZ CURRICULAR DO CURSO DE ENGENHARIA DE COMPUTAÇÃO DOS CAMPI BRAGANÇA PAULISTA E ITATIBA DA UNIVERSIDADE SÃO FRANCISCO – USF.

O Presidente do Conselho de Ensino, Pesquisa e Extensão – CONSEPE, no uso das atribuições que lhe conferem o Estatuto e Regimento da Universidade São Francisco – USF e em cumprimento à deliberação do Colegiado em 28 de junho de 2018, constante do Parecer CONSEPE 6/2018 – Processo CONSEPE 6/2018, baixa a seguinte

RESOLUÇÃO

- **Art. 1º** Fica alterada, conforme anexo, a Matriz Curricular do curso de Engenharia de Computação dos Campi Bragança Paulista e Itatiba da Universidade São Francisco USF.
- § 1º A nova matriz curricular entrará em vigor a partir do 2º semestre de 2018.
- § 2º Os alunos ingressantes no 1º semestre letivo de 2018 serão migrados para o novo currículo.
- **Art. 2º** Esta Resolução entra em vigor nesta data, alterando as matrizes curriculares constantes das Resoluções CONSEPE 23/2015 e CONSUN 7/2017.

Bragança Paulista, 28 de junho de 2018.

Prof. Gilberto Gonçalves Garcia

Presidente

Anexo a Resolução CONSEPE 6/2018

CURSO DE ENGENHARIA DE COMPUTAÇÃO CAMPUS BRAGANÇA PAULISTA E ITATIBA

Curso: BP – 1098 – Currículo: 0002-B, Curso: IT – 1019 – Currículo: 0004-B Carga horária: 3.892h – Duração: 10 semestres

			CH semanal	CH integral	СН	СН
SEMESTRE	CÓDIGO	DISCIPLINA	em sala de aula	em sala de aula	Prática	TOTAL
	GR02149	Algoritmos Computacionais	4	40	32	72
	GR02152	Cálculo Fundamental	4	72	-	72
1°	GR02161	Física Fundamental	4	64	8	72
	GR02173	Princípios e Aplicações em Engenharia	4	56	16	72
	GR02177	Química e Ciência dos Materiais	4	64	8	72
		Total	20	296	64	360
	GR02330	Cálculo Diferencial	4	72	-	72
	GR02953	Estrutura de Dados	4	36	36	72
2°	GR02383	Fenômenos de Transporte	4	64	8	72
	GR02218	Leitura e Produção de Textos	4	72	-	72
	GR02417	Materiais Elétricos e Ópticos	4	64	8	72
		Total	20	308	52	360
	GR02331	Cálculo Integral	4	72	-	72
	GR02213	Estudo do Homem Contemporâneo	4	72	-	72
3°	GR02402	Instrumentação Eletrônica	4	48	24	72
	GR02410	Linguagens de Programação Orientadas a Objetos	4	44	28	72
	GR02479	Vetores e Álgebra Linear	4	72	-	72
Total		20	308	52	360	
	GR02329	Cálculo Avançado	4	72	-	72
	GR02342	Comunicação de Dados	4	72	-	72
4°	GR02387	Fundamentos de Eletricidade e Magnetismo	4	64	8	72
	GR02395	Globalização e Desenvolvimento Sustentável	4	72	-	72
	GR02311	Probabilidade e Estatística	4	72	-	72
Total		20	352	8	360	
5°	GR02332	Cálculo Numérico e Computacional	4	56	16	72
	GR02337	Circuitos Digitais	4	56	16	72
	GR02338	Circuitos Elétricos	4	56	16	72
	GR02375	Estática e Princípios de Resistência dos Materiais	4	72	-	72
	GR02794	Redes de Computadores	4	72	-	72
		Total	20	312	48	360

	GR02792	Arquitetura e Organizações de Computadores	4	72	-	72
6°	GR02345	Controle e Servomecanismos	4	56	16	72
	GR02359	Eletrônica Analógica	4	56	16	72
	GR02362	Eletrônica Digital	4	56	16	72
	GR02365	Engenharia de <i>Software</i>	4	72	-	72
	•	Total	20	312	48	360
	GR02326	Banco de Dados	4	52	20	72
	GR02954	Computação Gráfica e Processamento de Imagens	4	36	36	72
7°	GR02439	Processamento Digital de Sinais	4	60	12	72
	GR02447	Projeto e Desenvolvimento de Software	4	36	36	72
	GR02466	Sistemas Operacionais	4	56	16	72
		Total	20	240	120	360
	GR02955	Aprendizagem de Máquina e Inteligência Artificial	4	56	16	72
	GR02370	Estágio Supervisionado em Engenharia de Computação	4	72	160	232
8°	GR02427	Microprocessadores e Microcontroladores	4	40	32	72
	GR02431	Optativa I	4	72	-	72
	GR02957	Teoria dos Grafos e Matemática Discreta	4	72	-	72
Total		20	260	208	520	
	GR02366	Engenharia Econômica	2	36	-	36
	GR02768	Metodologia do Trabalho Científico	2	36	36	72
9°	GR02432	Optativa II	4	72	-	72
	GR02956	Sistemas Embarcados e Robótica	4	20	52	72
	GR02961	Teoria da Computação e Compiladores	4	64	8	72
Total		16	228	96	324	
	GR02960	Análise de Algoritmos	4	60	12	72
10°	GR02209	Empreendedorismo	4	72	-	72
10⁰	GR02959	Sistemas Autônomos	4	20	52	72
	GR02770	Trabalho de Graduação	4	72	108	180
		Total	16	224	172	396
		Atividades Complementares				132
		TOTAL				3.892
	GR01902	Introdução à Língua Brasileira de Sinais – LIBRAS (optativa)				36

EMENTAS E OBJETIVOS

PERÍODO	COMPONENTE	
1º Semestre	ALGORITMOS COMPUTACIONAIS	
Objetivo	Desenvolver no aluno dos cursos de engenharia a capacidade de solucionar problemas através de linguagem algorítmica e, com este objetivo, familiarizá-lo, em sua atuação acadêmica e profissional, com uma linguagem de programação de alto nível, aplicando-a em suas práticas científicas e tecnológicas.	
Ementa	Conceito e desenvolvimento de algoritmos. Tipos de dados. Operadores e expressões. Entrada e saída de dados. Comandos de controle de fluxo: decisões e repetições. Estrutura de dados homogêneos (Vetores e matrizes). Modularização de programas (subprogramas). Implementação de algoritmos usando uma linguagem de programação de alto nível.	
1º Semestre	CÁLCULO FUNDAMENTAL	
Objetivo	Desenvolver habilidades de interpretação e resolução de problemas que utilizem conjuntos numéricos, operações com números, intervalos e desigualdades, funções de uma e de várias variáveis, cálculo de áreas e volumes, razão e proporção e trigonometria.	
Ementa	Conjuntos numéricos. Intervalos e desigualdades. Funções reais de uma variável real. Funções reais de várias variáveis reais, cálculo de áreas e volumes, razão e proporção e trigonometria.	
1º Semestre	FÍSICA FUNDAMENTAL	
Objetivo	Apresentar as leis e conceitos básicos da Física, bem como o formalismo descritivo próprio desta ciência. Desenvolver conceitos fundamentais para o entendimento dos diversos fenômenos ligados ao curso. Grandezas Físicas. Sistemas de Unidades. Força e Leis de Newton. Movimento	
Ementa	em uma e duas dimensões. Quantidade de movimento. Trabalho e Energia. Temperatura e Calor.	
1º Semestre	PRINCÍPIOS E APLICAÇÕES EM ENGENHARIA	
Objetivo	Apresentar aos estudantes as diversas modalidades da Engenharia, suas especificidades e a inter-relação entre elas, bem como as responsabilidades do Engenheiro perante a sociedade.	
Ementa	Histórico, atividades e perspectivas da Engenharia. Campos de atuação do Engenheiro. A interdisciplinaridade e as relações da Engenharia com a tecnologia e sociedade. Ética, responsabilidade civil e exercício profissional do engenheiro. Normas de segurança, prevenção e combate a incêndio. Temas atuais na área de Engenharia.	
1º Semestre	QUÍMICA E CIÊNCIA DOS MATERIAIS	
Objetivo	Fornecer aos alunos subsídios para interpretar fenômenos físicos e químicos e as propriedades dos materiais, buscando estabelecer relações entre o nível macroscópico e microscópico do conhecimento químico.	
Ementa	Conceitos essenciais de estrutura da matéria e reações químicas. Ligações químicas. Reações químicas e síntese. Estequiometria. Soluções químicas. Introdução à ciência dos materiais.	

PERÍODO	COMPONENTE
2º Semestre	CÁLCULO DIFERENCIAL
Objetivo	Desenvolver habilidades de interpretação e resolução de problemas que utilizem conceitos de cálculo de elementos infinitesimais a espaços n-dimensionais.
Ementa	Funções reais de uma variável real: Limites, Derivadas e Aplicações. Funções reais de várias variáveis reais: Derivadas parciais; Derivadas direcionais; Máximos e mínimos. Aplicações.
2º Semestre	ESTRUTURAS DE DADOS
Objetivo	Descrever conceitos de abstração de dados. Reconhecer técnicas de alocação dinâmica de memória. Definir os tipos de estruturas de dados existentes e suas aplicações. Solucionar problemas por meio da utilização das diferentes estruturas de dados existentes.
Ementa	Recursividade. Ponteiros. Alocação dinâmica de memória. Estruturas de dados clássicas: listas ligadas, filas e pilhas, árvores binárias e árvores AVL. <i>Heaps</i> . Tabelas <i>hash</i> . Tipos abstratos de dados. Conceitos de algoritmos de ordenação e pesquisa.
2º Semestre	FENÔMENOS DE TRANSPORTE
Objetivo	Apresentar os fundamentos da Termodinâmica e dos Fenômenos de Transporte dando ênfase aos aspectos conceituais. Apresentar aplicações em diferentes áreas da engenharia.
Ementa	1ª lei da termodinâmica. Máquinas térmicas e Sistemas de refrigeração. 2ª lei da termodinâmica. Os mecanismos de transferência de calor: condução, convecção e radiação. Elementos de escoamentos de fluidos. A equação de Bernoulli.
2º Semestre	LEITURA E PRODUÇÃO DE TEXTOS
Objetivo	Introduzir o aluno nas técnicas de leitura do texto argumentativo, visando estudo e análise crítica. Expor o aluno aos gêneros textuais argumentativos típicos da academia, em confronto com os não acadêmicos. Propiciar uma prática de produção de respostas discursivas a questões que visem à compreensão de textos argumentativos. Oportunizar uma prática de resumos e de resenhas de textos que transitam no espaço acadêmico.
Ementa	Introdução aos gêneros textuais que circulam no contexto acadêmico (livros técnicos, artigos científicos, resumos e resenhas). Prática de leitura e análise de textos acadêmicos. Prática de produção de resumos e resenhas de textos acadêmicos.
2º Semestre	MATERIAIS ELÉTRICOS E ÓPTICOS
Objetivo	Apresentar os conceitos sobre os materiais empregados em Engenharia Elétrica. Desenvolver e discutir aspectos sobre a estrutura da matéria enfatizando as propriedades elétricas, magnéticas e ópticas de materiais. Apresentar a óptica e a ondulatória visando compreender as radiações eletromagnéticas, sua interação com os materiais e suas aplicações em Engenharia.
Ementa	Ótica Geométrica: Reflexão e Refração da luz. Lentes e instrumentos ópticos. Ondas unidimensionais, bidimensionais e tridimensionais. Propriedades elétricas, magnéticas e ópticas dos materiais. Semicondutores. Diagrama de energia em semicondutores. Junção p-n. Efeito fotoelétrico; célula fotoelétrica.

PERÍODO	COMPONENTE
3º Semestre	CÁLCULO INTEGRAL
Objetivo	Desenvolver habilidades de interpretação e resolução de problemas que utilizem conceitos de cálculo de elementos infinitesimais a espaços n-dimensionais.
Ementa	Integrais e Aplicações. Coordenadas polares, cilíndricas e esféricas. Integrais múltiplas e aplicações.
3º Semestre	ESTUDO DO HOMEM CONTEMPORÂNEO
Objetivo	Desenvolver uma reflexão crítica a respeito do homem contemporâneo e dos desafios que a sociedade, a economia e a cultura lhe impõem nos níveis do conhecimento, da ética, do projeto de vida, dos princípios pessoais de conduta e do exercício da cidadania e também da história e da cultura afro-brasileira, por meio da perspectiva cristã e franciscana.
Ementa	As grandes transformações no mundo: desafios e esperanças. Educação e a (pós)-modernidade: problema do conhecimento e da tecnologia. Dilemas éticos da contemporaneidade. Desafios da cidadania e da cultura afro na sociedade brasileira. Espiritualidade: construção da subjetividade.
3° Semestre	INSTRUMENTAÇÃO ELETRÔNICA
Objetivo	Apresentar os principais aspectos relacionados às medições de grandezas elétricas em circuitos RLC, com Diodos, Transistores e Amplificadores Operacionais. Oferecer experimentos em laboratório, envolvendo também medições de sinais ópticos, além de outras grandezas, como temperatura, vazão, pressão, força, deslocamento, posição, velocidade, aceleração e vibração. Ambientar o estudante nas medidas de sinais alternados e seus parâmetros intrínsecos.
Ementa	Instrumentos analógicos e digitais de medida. Pontes de medição. Métodos de medição. Medidas de grandezas elétricas. Transformadores para instrumentos convencionais e não convencionais. Transdutores em sistemas de energia elétrica. Medidas em Corrente Alternada, Medidas de Potência, Medidas de Fator de Potência (FP).
3º Semestre	LINGUAGENS DE PROGRAMAÇÃO ORIENTADAS A OBJETOS
Objetivo	Apontar as diferenças entre o paradigma estruturado e o paradigma orientado a objetos. Discutir conceitos de abstração de dados baseados em classes e objetos. Solucionar problemas algorítmicos por meio de linguagens de programação orientadas a objetos
Ementa	Elementos básicos da linguagem de programação orientada a objetos. Classes e objetos. Construtores e instanciação. Destruição de objetos. Sobrecarga. Herança. Tipos abstratos. Interface. Polimorfismo. Tratamento de exceções. Desenvolvimento de interfaces gráficas com o usuário. Projeto de soluções usando programação orientada a objetos.
3° Semestre	VETORES E ÁLGEBRA LINEAR
Objetivo	Desenvolver habilidades de operações com matrizes e vetores no Rn; de resolução e discussão de sistemas lineares; de identificação de espaços e subespaços vetoriais, de transformações lineares, de operadores lineares e mudança de base de um operador linear; de identificação de autovalores e autovetores de operadores lineares e diagonalização de matrizes de operadores lineares.
Ementa	Matrizes e Sistemas Lineares. Vetores. Operações com vetores. Distância, norma e ângulo. Produtos escalar e vetorial. Espaços vetoriais. Subespaços. Base e dimensão. Transformações lineares. Autovalores e autovetores.

PERÍODO	COMPONENTE
4º Semestre	CÁLCULO AVANÇADO
Objetivo	Desenvolver habilidades de interpretação e resolução de problemas que utilizem sequências e séries numéricas e de funções, equações diferenciais ordinárias. Transformadas de Laplace e equações diferenciais parciais.
Ementa	Sequências e séries numéricas e de funções. Equações diferenciais ordinárias. Transformadas de Laplace. Equações diferenciais parciais.
4º Semestre	COMUNICAÇÃO DE DADOS
Objetivo	Fundamentar os conceitos de comunicação de dados. Apresentar o conceito de camadas do modelo <i>OSI/ISO</i> , detalhando a transmissão de dados nas camadas física e de enlace. Aplicar os sistemas de comunicação de dados de alta velocidade e suas tecnologias de acesso.
Ementa	Conceitos de transmissão de dados e características do canal de transmissão. Meios de transmissão guiado e irradiado. Conceitos de propagação e linha de visada. Técnicas de codificação de sinais. Técnicas de comunicação de dados digitais: transmissão síncrona e assíncrona, detecção e controle de erros, códigos de linha. Controle de enlace de dados e métodos de acesso. Modulação analógica e digital. Multiplexação e espalhamento espectral. Principais tecnologias de comunicação de dados. Projeto de sistemas de comunicação de dados.
4º Semestre	FUNDAMENTOS DA ELETRICIDADE E MAGNETISMO
Objetivo	Apresentar os princípios elementares que regem os fenômenos da eletricidade e do magnetismo pela abordagem clássica e desenvolver os conceitos fundamentais sobre os fenômenos elétricos e magnéticos em Engenharia, estimulando o raciocínio investigativo do aluno.
Ementa	Principais distribuições de carga elétrica. Lei de Coulomb. Campo elétrico. Potencial elétrico. Lei de Gauss. Capacitância. Energia no campo elétrico. Campo magnético. Lei de Ampère. Lei de Faraday. Indutância. Forças no campo magnético. Trabalho e energia no campo magnético.
4º Semestre	GLOBALIZAÇÃO E DESENVOLVIMENTO SUSTENTÁVEL
Objetivo	Possibilitar ao aluno a análise e compreensão das relações entre o ambiente natural, o desenvolvimento tecnológico sustentável e as influências da globalização em nível local, regional e global. Discutir a ocorrência de desastres naturais e humanos, suas causas e as formas de prevenção, combate e mitigação de seus efeitos.
Ementa	Desenvolvimento sustentável: contextualização histórica e influências da globalização. Inovações e soluções tecnológicas aplicadas ao meio ambiente. Políticas econômicas de carbono. Planejamento estratégico e as dinâmicas para o desenvolvimento sustentável. Impactos da globalização. Desastres naturais, humanos e mistos: descrição, prevenção e combate.
4º Semestre	PROBABILIDADE E ESTATÍSTICA
Objetivo	Desenvolver conceitos básicos de Estatística necessários para a realização de coleta e análise multivariada de dados em diversas áreas de conhecimento.
Ementa	Variáveis. Organização de dados. Representação. Distribuição de frequência. Medidas de posição e de variabilidade. Probabilidade. Amostragem e estimação. Testes de confiança. Regressão e correlação

PERÍODO	COMPONENTE
5° Semestre	CÁLCULO NUMÉRICO E COMPUTACIONAL
Objetivo	Conceituar problemas matemáticos com soluções numéricas. Apresentar e desenvolver técnicas especiais para resolver problemas que não admitem solução analítica. Habilitar o aluno para a aplicação de métodos numéricos em problemas de Engenharia usando computadores digitais.
Ementa	Erros: arredondamento, truncamento e propagação. Zeros de uma função: equações algébricas e transcendentes. Sistemas de equações lineares: métodos diretos e iterativos. Integração numérica. Interpolação. Método da regressão: linear, exponencial e parabólica. Equações diferenciais ordinárias lineares. Diagrama de simulação.
5° Semestre	CIRCUITOS DIGITAIS
Objetivo	Apresentar os fundamentos e princípios de eletrônica digital em circuitos lógicos. Capacitar o aluno para projetar circuitos combinacionais otimizados e circuitos digitais com enfoque em lógica sequencial. Prover os conceitos fundamentais de circuitos digitais sequenciais. Conceituar e discutir famílias de dispositivos lógicos e suas aplicações.
Ementa	Sistemas de numeração e códigos. Aritmética binária. Conceitos lógicos e circuitos básicos. Minimização de funções booleanas. Circuitos com memória: flip-flops, contadores e registradores. Famílias de dispositivos lógicos. Características físicas e elétricas de circuitos integrados digitais. multiplexadores/demultiplexadores. Codificadores/decodificadores. Projetos.
5° Semestre	CIRCUITOS ELÉTRICOS
Objetivo	Capacitar o aluno na análise de circuitos elétricos em regime permanente. Desenvolver a aptidão para uso dos teoremas para análise de circuitos. Estender a análise de circuitos de corrente contínua para a análise em corrente alternada. Familiarização com respostas básicas de circuitos.
Ementa	Análise CC de circuitos elétricos. Leis de Kirchhoff. Teoremas de circuitos. Elementos armazenadores de energia. Impedância. Fasores. Circuitos de 1ª e 2ª ordem aplicando fasores. Potências complexas. Fator de Potência.
5° Semestre	ESTÁTICA E PRINCÍPIOS DE RESISTÊNCIA DOS MATERIAIS
Objetivo	Familiarizar o estudante com os conceitos da mecânica para a solução de problemas de estática do ponto material e de corpos rígidos no plano, determinação de forças em vigas e cálculo de forças em barras de treliças planas. Introduzir os conceitos iniciais de tensão e deformação, destacando os problemas de carregamento axial. Apresentar os conceitos necessários para calcular as propriedades de seções transversais planas.
Ementa	Equilíbrio de ponto material e dos corpos rígidos no plano. Treliças. Forças em vigas. Propriedades das figuras planas. Conceitos de tensão e deformação. Carregamento axial.
5° Semestre	REDES DE COMPUTADORES
Objetivo	Apresentar as camadas do modelo <i>OSI/ISO</i> , focando nas camadas de rede, transporte e aplicação. Analisar o modelo <i>TCP/IP</i> . Planejar a construção de projetos de rede de computadores com medidas de qualidade de serviço e segurança.
Ementa	Conceitos de redes de computadores. Arquitetura de redes de computadores. Modelos. Topologias, análise de conectividade e análise de atrasos. Protocolos de comunicação. Tecnologias de <i>LAN</i> . Camada de rede: controle de fluxo, controle de congestionamento, roteamento. Camada de Transporte: <i>TCP</i> e <i>UDP</i> . Camada de Aplicação. <i>QoS</i> , serviços diferenciados e integrados. Serviços distribuídos e <i>SDN</i> . Convergência de redes. Segurança e dependabilidade. Principais equipamentos de rede. Técnicas de projetos de rede.

PERÍODO	COMPONENTE
6º Semestre	ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES
Objetivo	Apresentar o funcionamento dos sistemas computacionais, com foco nas classes de sistemas e suas divisões, seus relacionamentos estruturais e dispositivos que os constituem com visões de integração ao sistema operacional.
Ementa	Introdução a organização de computadores. Unidade Central de Processamento. Memórias. Representação dos dados e instruções. Linguagem de máquina. Linguagem <i>Assembly</i> . Barramentos. Dispositivos de entrada e saída. Interrupções. Sistemas paralelos. Hierarquia de memória.
6° Semestre	CONTROLE E SERVOMECANISMOS
Objetivo	Capacitar o aluno para a análise e síntese no modelamento matemático de sistemas lineares físicos causais no domínio do tempo e da frequência. Habilitar o aluno a avaliar a estabilidade de sistemas dinâmicos. Apresentar e discutir os sistemas de controle clássicos e modernos.
Ementa	Modelo de sistemas dinâmicos lineares e invariantes no tempo: Função de transferência e Espaço de Estados. Resposta temporal. Resposta em frequência. Estabilidade. Controlabilidade. Noções de controle clássico: projeto de controladores pelo método do lugar das raízes no tempo e na frequência. Noções de controle moderno: realimentação de estado e introdução ao controle robusto. Atividades de Laboratório.
6° Semestre	ELETRÔNICA ANALÓGICA
Objetivo	Apresentar e discutir o funcionamento dos dispositivos semicondutores básicos. Capacitar o aluno para projetar redes de polarização para os dispositivos eletrônicos operando com pequenos sinais. Capacitar o aluno para analisar, especificar e projetar circuitos lineares e não lineares utilizando amplificadores operacionais, apresentando e discutindo aplicações nas diversas áreas da Engenharia.
Ementa	Diodos. Circuitos aplicativos. Transistores bipolares de junção. Parâmetros híbridos do TBJ. Amplificadores de tensão a um TBJ. Transistores de efeito de campo. Parâmetros híbridos do JFET. Amplificadores diferenciais. Amplificadores operacionais. Realimentação negativa. Circuitos com amplificadores operacionais.
6° Semestre	ELETRÔNICA DIGITAL
Objetivo	Conceituar e discutir famílias de dispositivos lógicos e suas aplicações. Desenvolver a aptidão para o projeto de circuitos digitais complexos com enfoque em lógica sequencial.
Ementa	Circuitos e dispositivos de memória. Dispositivos lógicos programáveis. Conversões A/D e D/A. Ferramentas computacionais para síntese e análise de circuitos digitais complexos. Projetos.
6° Semestre	ENGENHARIA DE SOFTWARE
Objetivo	Apresentar as etapas do desenvolvimento de um sistema. Capacitar para o uso das metodologias ágeis procurando abordar os mais diversos tipos de cenários científicos, tecnológicos e empresariais. Capacitar para a realização da modelagem de requisitos, projeto de arquitetura de <i>software</i> e gestão de projetos.
Ementa	Paradigmas de desenvolvimento de <i>software</i> . Metodologias ágeis. Engenharia de requisitos. Modelagem e arquitetura de <i>software</i> . Padrões de projeto. Versionamento. Qualidade de <i>software</i> . Gerenciamento de projetos.

PERÍODO	COMPONENTE
7° Semestre	BANCO DE DADOS
Objetivo	Compreender as vantagens e a arquitetura de sistemas de gerenciamento de banco de dados relacional (SGBD) por meio do modelo conceitual, lógico e físico. Aplicação das técnicas de normalização. Projetar uma arquitetura de banco de dados. Praticar linguagens de manipulação de dados e de definição de dados em um SGBD comercial. Conceituar bancos de dados <i>noSQL</i> .
Ementa	Modelagem de dados conceitual. Modelagem lógica. Normalização. Modelagem física de banco de dados. Linguagem de definição de dados. Linguagem de manipulação de dados. Linguagem de consulta de dados. Linguagem de transação de dados. Linguagem de controle de dados. Técnicas de indexação. Introdução aos bancos de dados <i>noSQL</i> .
7º Semestre	COMPUTAÇÃO GRÁFICA E PROCESSAMENTO DE IMAGENS
Objetivo	Apresentar as áreas da computação gráfica detalhando as conexões, correlações e aplicações de cada um de seus elementos. Apresentar os conceitos de processamento de imagem nas quatro operações básicas. Desenvolver aplicações empregando os conceitos e técnicas de computação gráfica. Manipular e utilizar técnicas de processamento digital de imagens.
Ementa	Percepção visual humana. Fundamentos de cor. Imagem digital. Dispositivos gráficos. Transformações geométricas 2D e 3D. Recorte e visibilidade. Transformações projetivas. Definição de objetos e cenas tridimensionais. Modelos de iluminação e tonalização. Texturas e mapeamentos. Rasterização e técnicas de antisserrilhado. Amostragem, realce, filtragem e restauração de imagens. Segmentação de imagens. Compressão de imagens. Noções de visão computacional e reconhecimento de padrões. Processamento de imagens.
7º Semestre	PROCESSAMENTO DIGITAL DE SINAIS
Objetivo	Apresentar os princípios fundamentais de processamento digital de sinais determinísticos, no domínio do tempo e no domínio da frequência. Habilitar o aluno a aplicar as técnicas e ferramentas para solução de problemas em processamento digital de sinais através de aulas práticas. Capacitar o aluno para o projeto de filtros digitais mediante uma abordagem determinística.
Ementa	Sinais e sistemas discretos. Transformada de Fourier discreta no tempo. Transformada discreta de Fourier e transformada rápida de Fourier. Sistemas amostrados. Transformada Z. Técnicas de projeto de filtros digitais. Sistemas IIR e FIR. Simulação e aplicações. Atividades de Laboratório.
7° Semestre	PROJETO E DESENVOLVIMENTO DE SOFTWARE
Objetivo	Desenvolver um projeto de software com cenários reais de aplicações. Capacitar para o desenvolvimento de interfaces humano-computador. Aplicar conceitos de verificação, validação, testes e técnicas de revisão de projetos de software.
Ementa	Conceitos de interação humano-computador. Design e avaliação de interfaces. Prática em engenharia de requisitos, modelagem, projeto e construção de software, verificação e validação. Aplicação de métodos ágeis. Testes de software.
7° Semestre	SISTEMAS OPERACIONAIS
Objetivo	Discutir arquiteturas e gerências dos sistemas operacionais. Estudar comparativamente algoritmos de gerenciamento de recursos. Contextualizar diferentes arquiteturas de sistemas operacionais em função do seu cenário de aplicação.
Ementa	Evolução das arquiteturas computacionais e o histórico dos sistemas operacionais. Gerência de processos, comunicação, concorrência e sincronização de processos. Gerenciamento de memória, alocação de recursos e <i>deadlocks</i> . Sistemas de arquivos, gerenciamento de dispositivos de entrada/saída.

PERÍODO	COMPONENTE	
8º Semestre	APRENDIZAGEM DE MÁQUINA E INTELIGÊNCIA ARTIFICIAL	
Objetivo	Apresentar os conceitos de Inteligência Artificial e dos métodos de busca aplicados à resolução de problemas. Aplicar técnicas de aprendizado de máquina, supervisionados e não supervisionados, para a construção de modelos de classificação, predição e melhoria de desempenho em problemas.	
Ementa	Agentes. Resolução de problemas. Métodos de busca. Representação do conhecimento. Incerteza. Aprendizado supervisionado: árvores de decisão; modelos lineares; redes neurais, máquinas de vetor de suporte; lógica Fuzzy; modelos não-paramétricos (<i>Knn</i>). Modelos Probabilísticos: Bayes; algoritmo EM. Aprendizado por reforço. Clusterização.	
8° Semestre	ESTÁGIO SUPERVISIONADO EM ENGENHARIA DE COMPUTAÇÃO	
Objetivo	Propiciar ao estudante de Engenharia de Computação experimentar na prática, sob supervisão, a aplicação dos diversos conceitos aprendidos no curso.	
Ementa	O plano de estágio deve ser definido individualmente para cada aluno, na época do desenvolvimento do estágio. O trabalho a ser desenvolvido deve necessariamente propiciar treinamento ao aluno para exercer atividades pertinentes a um engenheiro de computação. A disciplina possui um regulamento específico.	
8º Semestre	MICROPROCESSADORES E MICROCONTROLADORES	
Objetivo	Apresentar e discutir a organização generalista de um computador com enfoque nos princípios dos computadores a processador digital e a interação com sistema operacional. Apresentar os circuitos internos de microprocessadores, detalhes técnicos e conjunto de instruções. Capacitar o aluno para projetar sistemas digitais utilizando microprocessadores. Estimular a concepção de circuitos aplicativos com microcontroladores.	
Ementa	Arquitetura de sistemas computacionais a microprocessador digital: processadores, memórias, dispositivos de entrada e saída, barramentos, instruções, endereçamento, interrupções. Noções de sistemas operacionais. Técnicas de programação de baixo nível. Noções de compiladores.	
8° Semestre	OPTATIVA I	
Objetivo	Favorecer a flexibilização na formação do Engenheiro, possibilitando a ampliação dos conhecimentos, o desenvolvimento de outras habilidades e competências e, se couber, a extensão das atribuições profissionais pelo estudo de conteúdos que não constem na matriz curricular do curso.	
Ementa	Qualquer disciplina oferecida pela Instituição, respeitando pré /correquisitos e regulamentos específicos.	
8° Semestre	TEORIA DOS GRAFOS E MATEMÁTICA DISCRETA	
Objetivo	Compreender e utilizar as relações matemáticas entre elementos discretos, os métodos lógicos básicos de demonstração, as propriedades e a utilização de informações descritas ou representadas na forma de grafos.	
Ementa	Grafos. Árvores, caminhos, ciclos, circuitos, conectividade. Grafos dirigidos, dígrafos. Indução matemática. Recursividade. Relações de recorrência. Estruturas algébricas. Lógica preditiva e proposicional. Combinatória. Algoritmos de ordenação e pesquisa.	

PERÍODO	COMPONENTE	
9º Semestre	ENGENHARIA ECONÔMICA	
Objetivo	Proporcionar conhecimentos básicos sobre a engenharia econômica e fornecer fundamentos para a tomada de decisão sob os aspectos econômico e financeiro.	
Ementa	Conceitos básicos de engenharia econômica e de matemática financeira. Métodos de análise de investimento. Análise sob condições de risco e incerteza. Desenvolvimento econômico sustentável.	
9° Semestre	METODOLOGIA DO TRABALHO CIENTÍFICO	
Objetivo	Desenvolver a capacidade de empregar a metodologia científica para a solução de problemas de engenharia e para a prospecção de tema e elaboração do Trabalho de Graduação.	
Ementa	Orientação para desenvolvimento do projeto de trabalho de graduação. Pesquisa bibliográfica. Métodos e técnicas de pesquisa.	
9º Semestre	SISTEMAS EMBARCADOS E ROBÓTICA	
Objetivo	Apresentar os elementos básicos para a aplicação de sistemas embarcados em cenários de automação, robótica e controle. Relacionar os tipos, características e estruturas de sistemas operacionais embarcados. Desenvolver sistemas embarcados pela aplicação direta de microcontroladores e de sistemas de prototipagem eletrônica.	
Ementa	Definição e aplicações de sistemas embarcados. Estudo de arquiteturas de hardware, software e integração <i>hardware/software</i> . Sistemas operacionais embarcados. Sensores, atuadores e protocolos de comunicação. Estimativa de consumo de energia e estratégias de baixo consumo. Sistemas de prototipagem eletrônica. Projeto e construção de um sistema embarcado.	
9° Semestre	OPTATIVA II	
Objetivo	Favorecer a flexibilização na formação do Engenheiro, possibilitando a ampliação dos conhecimentos, o desenvolvimento de outras habilidades e competências e, se couber, a extensão das atribuições profissionais pelo estudo de conteúdos que não constem na matriz curricular do curso.	
Ementa	Qualquer Disciplina oferecida pela Instituição, respeitando pré /correquisitos e regulamentos específicos.	
9º Semestre	TEORIA DA COMPUTAÇÃO E COMPILADORES	
Objetivo	Apresentar as definições e propriedades de modelos matemáticos fundamentais na computação. Definir computabilidade e decidibilidade, assim como classes de problemas. Conceituar compiladores, montadores e interpretadores. Entender o funcionamento interno de um compilador estudando cada uma das fases de compilação.	
Ementa	Formalismo para descrição de linguagens: gramáticas e autômatos. Autômatos finitos determinísticos e não-determinísticos. Linguagens regulares. Autômatos de pilha e linguagens livres de contexto. Máquinas de Turing. Tese de Church. Complexidade, NP-completude. Problemas indecidíveis. Organização e estrutura de compiladores. Analisador léxico. Analisador sintático. Analisador semântico. Geração e otimização de código.	

PERÍODO	COMPONENTE
10° Semestre	ANÁLISE DE ALGORITMOS
Objetivo	Estudar algoritmos de ordenação e busca. Apresentar técnicas e modelos de análises da eficiência de algoritmos. Desenvolver programas mais eficientes para solução dos problemas computacionais.
Ementa	Algoritmos clássicos de ordenação e busca. Processamento paralelo e distribuído. Novos paradigmas de computação. Pesquisa operacional e otimização. Notação e Análise assintótica de pior e melhor caso. Algoritmos e complexidade. Avaliação de desempenho.
10° Semestre	EMPREENDEDORISMO
Objetivo	Fomentar a visão empreendedora, discutindo os aspectos envolvidos, desde a concepção de uma ideia até a sua efetiva implementação e monitoração; despertar e desenvolver a capacidade empreendedora dos alunos nas diversas áreas do conhecimento do ensino superior, utilizando a metodologia de modelo de negócios.
Ementa	Introdução ao empreendedorismo. Empreendedorismo nos contextos mundial e brasileiro. Visão geral de um modelo de negócios. Processo de design de um modelo de negócios. Quadro de um modelo de negócios. Avaliação de um modelo de negócios.
10° Semestre	SISTEMAS AUTÔNOMOS
Objetivo	Apresentar os conceitos de autonomia em sistemas embarcados e suas aplicações. Desenvolver um sistema autônomo de robótica móvel.
Ementa	Conceito de autonomia e inteligência em sistemas embarcados. Sistemas e robótica autônoma. Robôs móveis autônomos. Mapas, planejamento de trajetórias e de navegação autônoma de sistemas móveis. Aplicação de Inteligência Artificial em navegação autônoma. Detecção de obstáculos estáticos e dinâmicos. Construção e programação de um robô móvel autônomo.
10° Semestre	TRABALHO DE GRADUAÇÃO
Objetivo	Orientar e supervisionar a elaboração do Trabalho de Graduação em grupo, com base em diretrizes institucionais, segundo o Regulamento do Trabalho de Graduação dos cursos de Engenharia da Universidade São Francisco.
Ementa	Orientação para o desenvolvimento do Trabalho de Graduação na área de Engenharia. Aspectos formais de apresentação do trabalho de graduação: o trabalho escrito e a arguição. Normas técnicas e princípios éticos aplicados à publicação de trabalhos.